
The Keystone Fire Brigade 2005

Jacky Baltes, John Anderson, Brian McKinnon, and Shawn Schaerer

Autonomous Agents Laboratory
Department of Computer Science

University of Manitoba
Winnipeg, Manitoba, R3T 2N2, Canada

jacky,andersj@cs.umanitoba.ca

Abstract. The Keystone Fire Brigade is a robotic rescue team that has previ-
ously competed in competitions at RoboCup (Fukuoka, ’02; Padua ’03, Lisbon
’04), AAAI (Edmonton, ’02;San Jose ’04), and IJCAI (Acapulco, ’03). The key
elements of our approach are an emphasis on vision, a fully autonomous solu-
tion, and an implementation on inexpensive robot bases. This paper describes the
version of the team that will be appearing at RoboCup-2005. We are using a fully
autonomous robot with stereo vision for the first time. We overview the hardware
employed, methods used for visual processing, map-making and victim identifi-
cation. We also describe the experiences we had in the test domain and offer some
recommendations on future competitions.

1 Introduction

Robotic rescue is both a worthwhile application for artificial intelligence and a chal-
lenge problem that allows solutions to be compared in a controlled setting. Robotic
rescue pushed current research into autonomous robots to its limit. Most entries nowa-
days are teleoperated, because of the extreme difficulty of the USAR domain.

We believe that, ultimately, autonomous processing will be of great importance in
robotic rescue. In rescue settings, issues such as operator fatigue, lack of situational
awareness of the operator, cognitive load on the operator, and the number of individuals
an operator can control in real time [1, 2] all place limitations on human control.

We also believe that a focus on autonomous processing is important from the stand-
point of truly advancing artificial intelligence: the reason that most entries in the com-
petitions are teleoperated is precisely because autonomous control is still very primitive
in an areas as complex as robotic rescue, and avoiding the use of autonomous control
mechanisms does not do anything to improve this technology. We believe that once
autonomy has improved, teleoperation can be added to fill in the gaps where a human
operator can be helpful to the situation without being overwhelmed. We have thus been
focussing on autonomy as a key focal point in our work in robotic rescue.

This paper describes the Keystone Fire Brigade the University of Manitoba’s en-
try in the RoboCup-2005 Robotic Rescue Competition. Our approach embodies several
principles we believe will ultimately be important in successful robotic rescue prob-
lems: autonomy, a multiagent perspective, and parsimony.

Parsimony is an important goal in all robotics applications. Any additional feature
has a cost, both financially and in terms of computing power and other local resources,



and reliability. If a feature is not necessary to solve the problem, eliminating it provides
more resources to those features that are necessary. We believe, like others [3] that the
addition of any component should be carefully considered. Cost must be balanced with
the efficacy of the equipment to the improvement of overall system performance. Par-
simony is also one of the reasons that a multi-agent approach is important - by taking
the same resources and spreading them among a number of simpler agents, the inter-
action of these over a geographic area can deal with the problem better than a single,
highly complex agent. The more parsimonious the agent design, the more expendable
any individual robot can be considered as well.

The remainder of this paper details the hardware platforms employed in this year’s
Keystone Fire Brigade the use of optical flow for localization and mapping, our region-
based approach to stereo matching.

2 Team Members and Their Contributions

We have a variety of people who have contributed to this year’s team:

– Jacky Baltes: Team leader, lead designer, programmer
– John Anderson: Design, support
– Shawn Schaerer: optical flow
– Brian McKinnon: region segmentation, stereo matching
– Terry Liu: Programming

URL: http://avocet.cs.umanitoba.ca

3 Robot Hardware and Locomotion

We have two primary motivations for hardware design in rescue robots. The first of
these is reliance on extremely simple robotic platforms. Ultimately, the task of robotic
rescue will benefit from implementation on inexpensive platforms, since larger teams
can be afforded and individual robots can be viewed as being expendable in a dangerous
environment.

Our motivation in using simple hardware, however, is to force reliance on more ro-
bust and versatile control methodologies. A system relying heavily on accurate odom-
etry, for example, is severely crippled under conditions where odometry is inaccurate.
A system that does not assume the availability of accurate odometry readings, however,
will still operate under such conditions, as well as in conditions where odometry can be
useful.

The second major design factor is an emphasis on vision. Each of our robots em-
ploys simple low-power CMOS cameras or webcams, and has enough local processing
power for vision and robot control. Vision is the only sense employed by all of our
robots.

In the 2005 version of the Keystone Fire Brigade two types of robots will be used.
The first robot ZaurusBot is a simple differential drive design (see Fig. 1. Two servos
attach to drive the left and right wheels, and an webcam is integrated for vision. The



servos were modified by cutting out the motion stop and thus provide relatively nice
velocity control. Processing is provided by a PDA (Sharp Zaurus) with an attached
CMOS camera.

The second robot is based on a toy car (see Fig: 1, and thus uses Ackerman steering.
To support autonomous processing, the platform carries a VIA mini-ITX Eden 5000 mi-
crocontroller board with a 533 MHz Eden (x86 compatible) processor, 256 MB RAM,
and a 256 MB flash card. We developed a mini Linux distribution (based on the Debian
Linux distribution), which fits into this small space.

4 Sensors for Navigation and Localization

The greatest challenge on platforms such as those employed by the Keystone Fire
Brigade is the design and implementation of pragmatic algorithms for intelligent visual
processing, and the adaptation of these to the the low frame rates that are achievable
using the embedded systems driving the robots. This is the main contribution of our
team.

The use of vision as the only form of sensing requires that vision not only be used
to identify victims, which is the primary use of vision for most teams, but also to allow
the robot to localize and map the environment. The following subsections describe our
methods for dealing with each of these elements.

4.1 Ego Motion Estimation

In order for a robot using only vision to map an environment, its progress through
the environment must be measured by vision rather than by odometry, sonar, laser, or
a combination thereof. This is the problem of ego motion estimation, which requires
the robot to estimate its movement in terms of distance and angle by examining the
differences between visual frames.

we employ regular features for ego-motion estimation. Our approach uses the op-
tical flow between images to estimate the motion of the robot (Figure 2), and also to
indicate a lack of motion on the part of the robot (i.e. detecting when the robot is stuck).

If a recognizable pattern (a set of lines, intersections between lines, etc.) can be
recognized in two different frames, we can compute the change in angle and distance
on the part of the robot that produced that change in visual reference point. Note that
we assume that the line is at a constant height (e.g., a line on the floor).

Figure 3 shows the geometry of the situation. Assuming that the robot can determine
the angle between itself and a line, then the change in orientationδθ can be easily
computed by the difference in angle.

In the case of differential drive robot, this allows one to calculate thedifference
between the right and legft wheel velocities (assuming the width of the robot is known).
In the case of a rear-wheel or front wheel drive car, the steering angle can be computed
(assuming the axle distance of the robot is known).

The change in angle of the line does not allow one to solve for right and left wheel
velocities (in the case of a differential drive robot), or the linear velocity (in case of a
car-like robot). However, given that the robot can also determine the distance between



Fig. 1.Robotics platform: ZaurusBot on the top, Spike on the bottom



Fig. 2.Ego Motion Detection from Visual Frames

Fig. 3.Determining the change in angle from two visual reference points

the robot and the wall, solutions to the kinematic equations can be found and the motion
can be recovered. The geometry and solution is shown in Fig. 4.

To determine if the robot is blocked or otherwise stuck in one position, the image
is broken up into 16 equal sized sub-images. Of these, only the bottom 8 sub-images
need to be considered - everything else is further away and would not be likely to pro-
vide useful feedback regarding the motion of the robot. The system then computes the
differences between the current and the previous image for each quadrant. The colour
difference is defined as the sum of the absolute value of the differences in the red, green,
and blue channels. If the difference in a sub-image is above a threshold, the quadrant
is marked. If there are more than eight marked sub-images and the motors were turned
on in the previous time step, than the system signals that the robot is stuck or blocked.
We break the image into sub-images to allow for localized changes due to the motion



Fig. 4.Determining the distance travelled from two visual reference points

of some other agent or other external motion in the image, to try to limit the number of
false positives.

5 Map Generation

Just as we rely solely on vision for localization through ego-motion detection, we also
rely on vision for constructing a map while loczalizing through optical flow. This results
in a chicken-and-egg problem: While localization becomes easier as maps are created,
we must begin out of necessity with no valid initial map, making localization difficult,
which in turn complicates the process of constructing an accurate map.

Our approach to building a map involves the construction of sets of local two-
dimensional maps. The robot makes a map of the immediate area around itself (1m
x 1m), storing the map as an occupancy grid such as that shown in Figure 5. In this
map, the robot has plotted an obstacle (in black) and an open area (in green), while
the white areas represent unexplored areas. These local maps are separated by longer
traversals (a random walk in a particular direction) and are linked together as topolog-
ical maps. The distance and length of a traversal serves as a link between maps, but
as new features are detected earlier maps are studied for these features, allowing local
maps to overlap. The smaller size of the local maps allows the local area to be explored



Fig. 5.Local Map

quickly, and the traversals between allow the robot to map different areas without errors
in one map compounding to cause problems in later maps.

We plan in the future to extend this work to include a case-based reasoning system
that employs typical sensor readings (especially “typical” images of the area) to identify
areas and to connect them via topologial paths.

6 Region Segmentation

We have made significant progress in our work on stereo vision and in particular on us-
ing region segmentation to help stereo matching. The aim of our overall approach is to
identify useful regions and match them between stereo images, with limited computa-



tional resources and under conditions typical of the USAR domain. In fully autonomous
systems, stereo-matched regions are intended as input to routines for ego-motion detec-
tion, localization, and map-building (as employed originally in [4, 5] using a single
camera).

We divide the process of performing region matching in stereo vision into six stages:
color correction, image blur, edge detection, region extraction, region simplification,
and stereo matching. Some of the more interesting stages will be described in the fol-
lowing subsections.

6.1 Edge Detection

After preprocessing the image with color correction and blurring, we use edge detection
to find possible boundaries of regions.

We employ the Sobel edge detection in our implementation, because it is compu-
tationally simple and proves robust under a variable conditions. Sobel edge detection
involves the application of convolution masks across the image. We employ two masks,
for the horizontal and vertical dimensions respectively:−1 0 1

−2 0 2
−1 0 1

 −1 −2 −1
0 0 0
1 2 1


After applying each mask, normalization is performed by dividing each pixel value

by four. The resulting pixels are examined against a threshold value, where values larger
than the threshold indicate an edge.

6.2 Region Growing

Having obtained a set of strong edges from a smoothed image, we use this along with
the original smoothed image to determine a set of regions in each individual image.

Our approach to region segmentation involves growing regions from individual pix-
els using a stack-based approach. At any point, the pixels on the stack represent those
from which future expansion of the region will take place. We begin by marking each
pixel in the smoothed image as unexamined, and marking a single unexamined pixel as
examined and placing it on the stack. We then repeatedly pop the topmost entry off the
stack, and attempt to grow the region around it by examining the pixels immediately
above and below, and to the left and right of that pixel. Each of these is tested to see if
it is an edge pixel in the edge map, in which case it is ignored (allowing edges to form
a strong boundary for regions). Each is also tested to see if it is a color match to the
region being built, by summing the squares of the differences across all color channels.
If this value falls below a defined threshold for error, the pixel is considered to be a part
of the current region, and that pixel is placed on the stack to further extend the region;
if not, the pixel is ignored. The threshold for color error is the mean color value of all
pixels currently in the region, allowing the threshold to adapt as the region is grown.
The algorithm terminates with a completed region once the stack is empty. A threshold



is set on the acceptable size of a grown region, and if the region size falls below this
level, the region is discarded.

To extend this algorithm to grow a set of regions, we must recognize two things:
first, it should be possible for an area to be part of more than one region in initial stages,
since an image will generally be factorable into regions in a number of different ways.
Thus, the algorithm must allow any pixel to be potentially claimed by more than one
grown region. Second, once we throw a region away as being too small, we do not
wish to start growing other regions within this same area, as this has already proved
unfruitful. Similarly, once we have defined a region, it will be more useful to start new
regions outside that defined area.

Our initial approach was to begin searching the image for a non-visited pixel, grow-
ing a region using the algorithm described above (while marking each pixel as exam-
ined when it is placed on the stack), and then starting the next region by searching for an
unexamined pixel. This approach is functional, but in practice, linear scanning wastes
resources because many unsuccessful regions are attempted. We have found it more
fruitful to begin with randomly selected points (20 for a 320 x 240 image), selecting the
location of each after regions have been grown from all previous points.

We also attempt to merge regions based on degree of pixel overlap. Each region is
examined with others that it abuts or overlaps, and regions are merged if one of two
thresholds are exceeded. The first of these is the percentage of pixels that overlap - this
value requires a significant overall similarity, and is generally most useful in merging
small regions. For merging larger regions, the likelihood of a large percentage overlap
is small, and so the threshold used is a total pixel overlap. By using overlap rather than
color separation as a basis for merging, shadows can be properly joined to the objects
that cast them, for example, or glare to the objects the glare is placed upon, without
having to set an excessively high color threshold.

At this point, we have a collection of strong regions in each of the two images (the
top stereo pair in Figure 6). Each region is represented by a map between the original
image and the region (a set of boolean pixels where each 1 indicates a pixel present in
the image), as well as a set of region attributes: its size, mean colour value, centroid,
and a bounding box.

6.3 Region Simplification

The next step in providing useful visual information to a robotic rescue agent is the
matching of regions between a pair of stereo images. This, however, is a complex pro-
cess that can easily consume a great deal of the limited computational resources avail-
able. Our initial stereo matching process involved examining all pixels that could pos-
sibly represent the same region across the stereo pair, requiring checking for a match
between hundreds of pixels for each potential match. We have considerably simpli-
fied this process by simplifying the structure of the regions themselves, allowing us to
match a much smaller set of data. This process is analogous to smoothing noise out of
an image before looking for edges.

We simplify regions by generating a convex hull for each, allowing us to replace
the set of points outlining the region with a simpler set describing a polygonP , where
every point in the original point set is either on the boundary ofP or inside it. We begin



Fig. 6. Segmented regions (top), with convex hulls plotted and distance lines from the centroid
added (middle). Stereo-matched regions (bottom) are bounded by a colored box, with a line
emanating from the centroid of the image

with the boolean grid depicting each image. The exterior points along the vertical edges
(the start and end points of each row) are used to generate a convex hull approximating
the region using Graham’s Scan [?]. We form a representation for the convex hull by
drawing radial lines at 5 degree intervals, with each line originating at the centroid of
the region and extending to the hull boundary. The length of each such line is stored,
allowing an array of 72 integers to describe each region. The middle stereo pair in
Figure 6 illustrates the result of this simplification process.

6.4 Stereo Matching

Once an image has been segmented into regions and simplified, regions must be matched
across stereo images. Before simplifying regions, our original approach was limited in
that it required superimposing region centroids and matching pixels. This was particu-



larly troublesome for large regions. With convex hull simplification, however, the effi-
ciency of matching can be greatly improved. With each convex hull, the very first stored
value represents the distance from the centroid to the hull boundary at the 0-degree
mark. A comparison of the similarity of two regions can then be easily performed by
summing the squares of the differences of the values in the 72 corresponding positions
in the two arrays (implicitly superimposing the centroids). Beyond greatly decreasing
the number of individual points to match, this representation allows time required to
make a comparison independent of region size. There is no particular threshold to a
match - each region is matched to its strongest partner in the corresponding stereo im-
age. We do, however, constrain matches for the purposes of maintaining accuracy by
forcing a match to be considered only after its appearance in three successive video
frames. This is particularly useful for noisy and poorly lit environments such as USAR.
The bottom stereo pair in Figure 6 illustrates the matching of three regions between the
raw stereo sample pair. The lines in each region are used as an indication to a teleoper-
ator the angle that one would region have to be oriented to match the orientation of the
other. That is, straight horizontal lines require no reorientation. The use of these lines
will be explained momentarily.

Since we are matching regions without regard to the location in the visual frame,
similar regions can be matched despite unreasonable spatial displacement. This is equally
true without employing convex hulls, and is part of the nature of this domain. Because
the robot is moving over very uneven terrain, cameras are likely poorly calibrated, and
as the domain is unpredictable, we cannot make strong assumptions about the position
of a region in each of a pair of stereo images. If this were employed in a domain where
such assumptions could be made, the process could be made more accurate by strongly
constraining the distance between potential matches in regions in a stereo pair, thereby
lowering the number of potential matches that would have to be considered.

6.5 Detection of Victims

While the system for awarding points is strongly oriented toward the use of multiple
forms of sensing, most victims in the NIST testbed are reasonably easily identified
visually. While there is much current work on the visual detection of victims, we are at-
tempting to work with a reasonably simple, pragmatic approach to this difficult problem
that is computationally viable for small embedded systems.

Our victim detection approach uses both colour as well as shape information. Flesh
colored spots are marked as possible victim locations (these algorithms were trained
beforehand on flesh patches of team members in the lighting used in the test arena).

We have developed a 12 parameter colour model which uses Red, Green, and Blue
as well as three difference channels: Red - Green, Red - Blue, and Green - Blue. The
differences are included in this parameter model because of their tendency to remain
relatively constant in different views of objects of the same colour despite of lighting
variations over a field. This approach is the same used in our Doraemon vision server
[6] and has proven itself in years of robotic soccer competition.

Currently, we use a simple blob detection scheme. The system signals that it has
found a victim by calculating the apparent size and aspect ratio of a skin coloured blob.
If these parameters are within limits, the system signals the detection of the victim by



performing a series of 360 degree turns at the current location. It then continues to
search the environment.

7 Practical Application to Real Disaster Sites

While this base is extremely cheap and portable, this is not robust enough to employ in
a real disaster setting. However, it is sufficient to demonstrate the approaches we believe
are useful for future robotic rescue work, and can navigate within the yellow zone of
the NIST testbed [7]. Our intent is to demonstrate the use of vision and autonomous
control this task, and to further applied research in these areas in robotic rescue, rather
than to tackle the less stable terrains in the orange and red arenas.

References

1. Casper, J.: Human-robot interactions during the robot-assisted urban search and rescue re-
sponse at the world trade center. Master’s thesis, University of South Florida (2002)

2. Casper, J., Murphy, R.: Workflow study on human-robot interaction in usar. In: Proceedings
of the IEEE International Conference on Robotics and Automation. Volume 2., Washington,
DC, IEEE (2002) 1997–2003

3. Balch, T., Arkin, R.C.: Communication in reactive multiagent robotic systems. Autonomous
Robots1 (1994) 27–52

4. Anderson, J., Baltes, J., Kraut, J.: The keystone rescue team. In: Proceedings of the RoboCup
Symposium, Padova, Italy (2003)

5. Baltes, J., Anderson, J.: A pragmatic approach to robot rescue: The keystone fire brigade. In:
Proceedings of the AAAI Workshop on Rescue Robots. (2002)

6. Anderson, J., Baltes, J.: The Doraemon User’s Guide. Department of Computer Science,
University of Manitoba, Winnipeg, Canada. (2002) http://robocup-video.sourceforge.net.

7. Jacoff, A., Messina, E., Evans, J.: Experiences in deploying test arenas for autonomous mobile
robots. In Messina, E., Meystel, A., eds.: Proceedings of the 2nd Performance Measures for
Intelligent Systems Workshop (PerMIS). NIST Special Publication 982, National Institute of
Standards and Technology (2001) 87–95


